

INVESTIGATION OF STRESS AND FAILURE IN GRANULAR SOILS FOR LIGHTWEIGHT ROBOTIC VEHICLE APPLICATIONS

Carmine Senatore*, Markus Wulfmeier†, Jamie MacLennan**, Paramsothy Jayakumar**, and Karl lagnemma*

* Massachusetts Institute of Technology, Cambridge, MA, USA † Gottfried Wilhelm Leibniz Universität Hannover Hannover, Germany ** U.S. Army TARDEC Warren, MI, USA

maintaining the data needed, and c including suggestions for reducing	nection of information is estimated in ompleting and reviewing the collecti this burden, to Washington Headqu uld be aware that notwithstanding an OMB control number.	ion of information. Send comments arters Services, Directorate for Information	regarding this burden estimate of mation Operations and Reports	or any other aspect of th , 1215 Jefferson Davis l	is collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE 02 AUG 2012		2. REPORT TYPE Briefing		3. DATES COVE 01-07-2012	RED 2 to 01-08-2012	
4. TITLE AND SUBTITLE					5a. CONTRACT NUMBER	
Investigation of Stress and Failure in Granular Soils for Lightweight					5b. GRANT NUMBER	
Robotic Vehicle Applications				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)		5d. PROJECT NUMBER				
Jamie MacLennan; Paramsothy Jaykumar; Carmine Senatore; Markus Wulfmeier					5e. TASK NUMBER	
					5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Massachusetts Institute of Technology,77 Massachusetts Ave,Cambridge,Mi,02139					8. PERFORMING ORGANIZATION REPORT NUMBER ; #23231	
	RING AGENCY NAME(S) A		Mi, 48397-5000	TARDEC	ONITOR'S ACRONYM(S) ONITOR'S REPORT	
12. DISTRIBUTION/AVAIL	ABILITY STATEMENT	on unlimited				
13. SUPPLEMENTARY NO Submitted to 2012 Troy, Michigan	TES NDIA Ground Vehi	cle Systems Engine	ering and Techno	logy Sympos	ium August 14-16	
14. ABSTRACT Gain deeper under lightweight vehicle	standing of fundam	ental mechanics gov	erning traction g	eneration un	der small,	
15. SUBJECT TERMS						
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF					19a. NAME OF	
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	ABSTRACT Public Release	OF PAGES 20	RESPONSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

Motivation

- UNCLASSIFIED
- Gain deeper understanding of fundamental mechanics governing traction generation under small, lightweight vehicles.
- Improve modeling accuracy and predictive power.
- This will allow small robots to be more effective performers and operate more reliably.

Methodology

Single Wheel Experiments

Terramechanics Modeling

Direct Shear Tests

Interfacial Stress Measurement

Radius = 13 cm Width = 16 cm

Penetration Tests

Soil Motion Measurement (PIV)

Presentation Outline

- State-of-the-art model for wheeled vehicles mobility.
- Soil characterization (i.e., how to obtain the parameters for the aforementioned model).
- Single wheel experimental methodologies
 - Particle Image Velocimetry
 - Force sensors
- Comparison between State-of-the-art modeling and measurements
- Conclusions and future work

Bekker-Wong Model

- Terramechanics models are based on:
 - **Bekker-Wong** equations for normal stress calculations

$$\sigma_{n} = \begin{cases} \sigma_{1} = \left(\frac{k_{c}}{b} + k_{\phi}\right) r^{n} (\cos \theta - \cos \theta_{f})^{n} \\ \\ \sigma_{2} = \left(\frac{k_{c}}{b} + k_{\phi}\right) r^{n} \left(\cos \left(\theta_{f} - \frac{\theta - \theta_{b}}{\theta_{m} - \theta_{b}} (\theta_{f} - \theta_{m})\right) - \cos \theta_{f}\right)^{n} \end{cases}$$

 θ_m is the angle where normal stress reaches a peak

Janosi-Hanamoto equation for tangential stress calculation

$$\begin{cases}
\tau_x(\theta) = \tau_{max} \left(1 - e^{\frac{-j_x}{k_x}} \right) \\
\tau_{max} = c + \sigma_n(\theta) \tan \phi
\end{cases}$$

Mohr-Coulomb criterion

Soil Characterization Direct Shear Test

- Direct shear tests are used to characterize shearing properties of soils
- Direct shear tests are standard tests in the geotechnical practice

Direct Shear Test Results

Direct shear tests provide shearing properties of the soil:

$$au_x(heta) = au_{max}\left(1-e^{rac{-j_x}{k_x}}
ight)$$
 Shear Modulus Cohesion
$$au_{max} = c + \sigma_n(heta) an \phi$$
 Angle of Internal Friction

$$\tau_x(\theta) = \tau_{max} \left(1 - e^{\frac{-j_x}{k_x}} \right)$$

Soil Characterization Penetration Tests

 Plate penetration tests were performed to characterize soil response to normal loading

 According to Bekker-Wong theory, plates dimension have to be comparable with the wheel contact patch under investigation.

Encoder

Actuator

Force Sensor

Penetration Plate

Penetration Tests

Penetration tests provide information about soil normal loading response

Penetration Tests Variability

- Penetration tests showed how variable, even under carefully controlled laboratory conditions, soil response can be.
- An initial attempt to statistically characterize soil response was made but further investigations are under way.
- Aspect ratio influence was not investigated because plate width is constrained by wheel geometry (wheel width is fixed while contact patch length depends on sinkage).
- Using the (deterministic) approach suggested by Wong*, two sets of parameters were calculated. 57 is obtained truncating the data at 50kPa.

Set	n	$k_{\it C}$ [kN/m $^{ m n+1}$]	$k_{oldsymbol{\phi}}$ [kN/m ⁿ⁺²]
357	0.99	-55	4584
57	1.4	846	6708

Single Wheel Testbed

Tempered 1" Thick Glass

500W Spot Lights

Ruler, needed to calibrate pixel/mm ratio

Phantom 7.1 High Speed Camera

PIV Description

- PIV is a methodology for extracting instantaneous velocity fields from a series of images
- Probable displacement is determined by using the cross correlation function

$$R_u(x,y) = \sum_{i=-K}^K \sum_{j=-L}^L I_1(i,j) I_2(i+x,j+y)$$

 Since a ground truth for soil motion was not available, the velocity of a plate (precisely measured through a draw-wire encoder) was compared with PIV measurements.

PIV Results

UNCLASSIFIED

- Wong Experiments
 - Average GroundPressure = 30-90 kPa

Figure 1.11: Soil flow patterns under a driven rigid wheel in sand

MIT Experiments

Average GroundPressure = 7-13 kPa

Force Sensors

- Flexing beam instrumented with strain gauges
- Tangential and Normal forces applied to the tip can be reconstructed from gauges reading

Stress Profile at Wheel-Soil Interface for Low Slip

Stress Profile at Wheel-Soil Interface for High Slip

35

Comparison Between Bekker-Wong Model and Measured Stress

Set	n	$k_{\scriptscriptstyle \mathcal{C}}$ [kN/m $^{\scriptscriptstyle \mathrm{n+1}}$]	k_{ϕ} [kN/m $^{ ext{n+2}}$]
357	0.99	-55	4584
57	1.4	846	6708

Conclusions and Future Work

- PIV shows phenomena that do not completely agree with assumptions behind classical models
 - Only one failure envelope develops (not two)
 - Soil failure is periodic
 - Soil is always attached to the wheel surface
- However, stress measurements show that Bekker-Wong model is still able to capture main trends (for low slip).
- Further efforts will be dedicated to characterize variability in soil response and how models are affected by it.
- The underlying complex mapping between soil displacement and stress (i.e., constitutive law) will be investigated in order to improve modeling capabilities.

